UE8 M2S1

Neuroimagerie et outils de diagnostics

- Microscopie optique, microscopie confocale et STED (2 heures, Mardi 12 Novembre 15 h à 17 h)
- Microdissection laser (30 minutes, Mardi 12 Novembre 17 h à 17 h 30)
- F-techniques (30 minutes, Mercredi 13 Novembre 11 h à 11 h 30)

Conférence Dr Laurent Bourdieu 'Fast sampling of neuronal activity by holographic 3D-random-access two-photon microscopy' (Jeudi 14 Novembre 10 h, Salle 66 Curib)

SÉMINAIRE IRIB Jeudi 14 novembre 2019 à 10h00

Salle 66, CURIB, Mont-Saint-Aignan

DR Laurent BOURDIEU Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, ENS Paris

« Fast sampling of neuronal activity by holographic 3D-random-access twophoton microscopy »

SÉMINAIRE IRIB

Jeudi 14 novembre 2019 à 10h00

Salle 66, CURIB, Mont-Saint-Aignan

DR Laurent BOURDIEU

Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197 INSERM U1024, ENS Paris

« Fast sampling of neuronal activity by

holographic 3D-random-access two-

photon microscopy »

Invité par David Vaudry (david.vaudry@univ-rouen.fr)

Institut de Recherche et d'Innovation Biomédicale de Haute-Normandie UFR Santé de Rouen 22 boulevard Gambetta – 76183 ROUEN CEDEX 1 Tél : 02 35 14 83 88 vincent.richard@univ-rouen.fr

Microscopie optique, microscopie confocale et STED

Recensement 2001:

82 Plates-Formes de Recherche opérationnelles

Depuis 2008: <u>RIO remplacé par IBiSA</u>

IBiSA = RIO + génopôle

"Infrastructures en Biologie, Santé et Agronomie"

- Charte des Plates-Formes de Recherche en Sciences du vivant:
- Définition
- Ouverture
- Mode de gestion
- Evolution technologique
- Formation
- Evolution

En 2018, 23 Plateformes de recherche référencées en Imagerie Cellulaire 19 Plateformes de recherche référencées en Imagerie In Vivo

http://www.ibisa.net

Plate forme Régionale de Recherche en Imagerie Cellulaire de Normandie

4 services :

- Synthèse peptides et criblage fonctionnel

- Bio Imagerie Photonique

- Microdissection et Q-PCR

- Microscopie électronique

Evaluation et renouvellement label IBiSA en 2019

Demande d'accès PRIMACEN: http://www.primacen.fr

Microscopie optique (appliquée à la biologie)

tube ontig

dianhranme e

réglage

tourelle porte-objecti objecti

A quoi peut servir un microscope?

- A donner une image grossie d'un petit objet
 = grossissement
- A séparer les détails d'un objet sur une image
 = résolution
- A rendre visible des détails à l'œil ou avec une caméra

Un microscope optique est un **instrument** composé de plusieurs lentilles superposées permettant d'augmenter le pouvoir grossissant.

Grandeurs en Microscopie optique

0.1 nm

Atome

1.> Eléments d'un microscope optique

Le microscope optique utilise la lumière. Il est doté de deux lentilles principales:

- l'une dans l'objectif, pour agrandir
 l'objet que l'on souhaite observer (il
 existe plusieurs grossissements)

- l'autre dans l'oculaire (grossissement fixe)

1.> Eléments en microscopie optique

2.≻ Les objectifs

Correction d'aberration Ouverture numérique Milieu d'immersion Distance de travail

Résolution théorique en optique

 $----0.61 \times \lambda_o$

Résolution =

NA obj

Résolution du microscope : plus petite distance entre deux points tels qu'ils puissent être considérés comme entités distinctes (extension de la tâche principale d'Airy)

2.≻ Les objectifs

♦ La résolution latérale détermine le grossissement

grossissement	NA	résolution théorique à 488 nm (λ = 500 nm)
4 ×	0.1	3.05 μm
40 ×	0.65	0.47 μm
63 ×	1.4	0.18 μm
100 ×	1.3	0.23 μm

 $\begin{array}{l} \textbf{Résolution} = \begin{array}{c} 0.61 \times 0.5 \\ \hline 1.3 \end{array} = \textbf{0.23 \ \mu m} \\ \begin{array}{c} \text{Limite séparation \overline{v}il humain : 100 μm} \\ \text{Soit un gain $de 500$.} \end{array} \end{array}$

Résolution des microscopes optiques ne peut être supérieure à 0,18 micromètre, cette résolution étant limitée par la diffraction de la lumière. Pour approcher de cette limite, nécessité d'utilisation d'un objectif à immersion à huile.

Calcul rapide du grossissement possible: NA * 1000 Grossissement max recommandé = 1.3 × 1000 = 1300

2.≻ Les objectifs

Correction des aberrations des lentilles

Aberrations chromatiques, sphériques, de coma, astigmatismes et de courbure de champ

Ex: Aberration chromatique:

	PLAPON60xOSC	UPLSAPO60xO
Axial chromatic aberration (Z direction) Compared for PSF fluorescent beads (405 nm, 633 nm).	Approx. 0 µm	Approx. 0.5 µm
Lateral chromatic aberration (X-Y direction) Compared for PSF fluorescent beads (405 nm, 488 nm, 633 nm).	Approx. 0.1 µm	Approx. 0.2 µm

Ex: Courbure de champ:

Après passage dans une lentille, l'image d'un plan n'est pas un plan, mais une surface sphérique concave (si lentille convergente) ou convexe (si lentille divergente).

Correction: association de lentilles

Les aberrations peuvent être corrigées par association de lentilles ou traitement des surfaces mais cela rend les objectifs de microscopes compliqués, fragiles et coûteux : à respecter

(c) Center in Focus

Les méthodes de contraste optique

Fond clair, contraste de phase, contraste interférentiel (Normarski), fond noir

Microscopie en fond clair

Un objet atténue la lumière le traversant. Nécessite d'observer un objet coloré

Prolifération dans coupe de glioblastome (1^{er} AC anti Ki67 et 2nd AC avidine-biotine-peroxydase qui permet la coloration du tissu exposé à la diaminobenzidine) = immunoperoxydase-DAB.

Les méthodes de contraste optique

Fond clair, contraste de phase, contraste interférentiel (Normarski), fond noir

Microscopie à contraste de phase

Échantillons minces non colorés sont transparents en fond clair.

Living Cells in Brightfield and Phase Contrast

transmis

Contrats de phase

Variables selon objectif

Exemple d'application: Les études de migration cellulaire

 Etude dynamique de la formation des prolongements cellulaires sur une durée de 12 à 24 h

Exemple d'application: Les études de motilité et division cellulaire

Les méthodes de contraste optique

Fond clair, contraste de phase, contraste interférentiel (Normarski), fond noir

♦ Microscopie à contraste interférentiel (Normarski)

Échantillons minces non colorés sont transparents en fond clair.

Nomarski Prism Interference Fringes

♦ Microscopie à contraste interférentiel différentielle (DIC)

Differential Interference Contrast Optical Pathways and Components

DIC= differential interference contraste

Contraste de phase versus DIC

Microscopie à fluorescence

3.> Comment voir plusieurs marqueurs dans 1 excitation, 2 émissions l'échantillon Alexa Fluor 488

Fluorescence SpectraViewer

RH 795

Pyridinium, 4-[4-[4-(diethylamino)phenyl]-1,3-butadienyl]-1-[2-hydroxy-3-[(2-hydroxyethyl)dimethylammonio]propyl]-, dibromide 172807-13-5

https://www.thermofisher.com/fr/fr/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html?icid=mphbkNP-spectraviewer-041014

3.> Comment voir plusieurs marqueurs dans l'échantillon 2 excitations, 2 émissions

Alexa Fluor 488 **LSD 751**

Fluorescence SpectraViewer

https://www.thermofisher.com/fr/fr/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html?icid=mphbkNP-spectraviewer-041014

Microscopie à fluorescence

3 marqueurs -> 3 couleurs

3. Fluorescence microscope

3.≻ Les différents modes de microscopie en fluorescence

Fluorescence Imaging Modes in Live-Cell Microscopy

4. ➤ Objectifs de la microscopie confocale

Principe

Sélection de lumière provenant d'un point et le rejet de celle provenant des autres points

- Acquisition de séries de sections optiques permettant la reconstruction 3D
- Elimination du signal fluorescent provenant d'autres plans grâce au pinhole, augmenter le contraste
- Augmentation de la résolution latérale et axiale
- Observation simultanée de différentes sondes fluorescentes
- Possibilité de faire de la représentation en X D

4. ➤ Principe de la microscopie confocale

cale

Image du point • dans le plan focal de la lentille Image du point[•] hors du plan focal de la lentille

Un diaphragme (pinhole) placé dans le plan F laisse passer la lumière provenant du point •

Le pinhole bloque presque toute la lumière provenant du point (HF) •

4.≻ Historique de la microscopie confocale

(principe)

1982

Juillet 2012

 Résultat: Le CLSM permet de réaliser des sections optiques dans un échantillon fluorescent ou réfléchissant

Z image 1 -Z image 56 ≈ 50 µm

La compilation de l'ensemble des sections permet une analyse XY, XZ et YZ de l'objet

Z image 1 - Z image 56 ≈ 50 μm

• Reconstruction: ces sections permettent de réaliser des animations de

l'objet

5. > Les différents éléments d'un CLSM

5. ≻ Les lasers

Light Amplification by Stimulated Emission of Radiation

Caractéristiques: • monochromatique

 \bullet composition du gaz influence la λ des raies d'émission

Exemples de lasers

Coût d'utilisation

- argon laser (350 nm)
- argon/krypton laser (488, 567, 649 nm)
- hélium/néon laser (633 nm)

fibre optique (10 à 100 mm) joue le rôle de pinhole: permet d'obtenir une source lumineuse ponctuelle.

Le choix des lasers

Qu'elles seront vos applications?

Individual line attenuation

accordable : 470 à 670 nm

1/ du temps d'excitation de chaque point

Grand NA

► Petit NA

ራ

 α = demi-angle d'ouverture (A/2)

(n = indice de réfraction du milieu entre objectif et échantillon) Si le milieu est de l'air : NA < 0.95

Section optique (µm) de différents objectifs sur un CLSM Biorad RC600

Objectif		Pinhole		
grossissement	NA	1 mm	7 mm	
60×	1.4	0.4 μm	1.9	60× NA 1.4, DT=170 μm 25× NA 0.8, DT=660 μm
40 ×	1.3	0.6	3.3	
40 ×	0.55	1.4	4.3	
25×	0.80	1.4	7.8	
4×	0.20	20.0	100	

5.≻ Les filtres d'arrêt

♦ Filtres

http://www.omegafilters.com

♦ Les différents types de filtres

5.≻ Les détecteurs

- 5. ≻ L'informatique
- L'image est composée de pixels = éléments de base de l'image L'information est placée sur une grille avec une adresse et peut être représentée à l'écran
- Chaque pixel est codé en bit: binary digit
- ♦ 1 (2¹)bit possède 2 tons qui sont blanc ou noir.
- 8 bits (2^8 tons = 256 niveaux de gris).

• L'image peut ensuite être convertie en fausses couleurs

5.≻ L'informatique

• Il est possible d'appliquer des filtres

réduction bruit de fond

étirement de l'échelle

• Il est possible de réaliser des opérations sur les images Réaliser le ratio: diviser deux images image A ÷ image B = image C

5.≻ L'informatique

La déconvolution

PSF: Point Spread Function

La déconvolution a pour objectif de supprimer par calcul mathématique la déformation de l'information

La déconvolution pour améliorer la qualité des images confocales

5. > Informatique <</p>

Le microscope d'un système confocal Microscopes: droit et inversé

Equipement:

- lampe visible + UV
- filtres (DAPI, FITC, TR)
- motorisation
- surplatine Z

DMIRE2

- détecteur de lumière transmise + DIC

DMRXA2

Objectifs

- X10 multi-immersion NA 0.40
- X16 multi-immersion NA 0.50
- X25 huile NA 0.75
- X40 huile NA 1.25/0.75
- X63 huile NA 1.32/0.60
- X63 eau avec bague correctrice
- X100 huile NA 1.4/0.70

La tête confocale

Les filtres pour la collecte de la fluorescence

Les options de scan

Vitesse	Résolution	
800 lignes / s	512 × 1 pixels	
25 images / s	512 × 32 pixels	
3 images / s	512 × 512 pixels	
20 s / image	4096 × 4096 pixels	
Scans XYt		

XY, Xyt XYZ XYZt XYZt

Les combinaisons possibles

1/Les détecteurs

- détecteurs de fluorescence
- détecteur de lumière
- transmise (DIC)

2/Les lasers pour l'excitation des fluorochromes

- 1 diode laser:
- 1 laser Argon:
- 3 lasers Hélium-Néon:

- 405 (Dapi)
- 458 (Dapi), 476,
- 488 (FITC, Fluo-3, GFP, SNARF) et 514 nm
- 543 nm (Texas Red, Cy3, PI)
- 594 (Texas Red, Alexa 594)
- 633 nm (Cy5, lumière transmise)

L'interface de pilotage du confocal

La partie analyse 2D

Etudes de multimarquage

OEXPLOSHap
OPrint
Osnap
Phys.
CFOM
Mask

 extension of the state o

6. Applications en microscopie confocale: exemples, protocoles et précautions

Tissus fixés

Tranches vivantes

Cellules en cultures

Préparation des échantillons

Marquage des échantillons

Acquisitions & traitement

1. La lumière réfléchie

◆ contrôle qualité en physique: analyse topographique de surfaces

Circuits imprimés

Fibres synthétiques

en biologie

30 jours de traitement

élasticité de la peau

Préparation des coupes

- ♦ anesthésier les animaux
- ♦ perfuser et fixer les animaux
- ♦ post-fixer les tissus
- ♦ incuber les tissus dans des bains de saccharose
- ♦ inclure les tissus dans une résine hydrophile d'enrobage et les congeler
- ♦ stocker les tissus à -80 °c
- ♦ réaliser des coupes de tissus à l'aide d'un cryotome
- ♦ stocker les coupes à 4°C

L'immunofluorescence indirecte

- ♦ 1 nuit 4°c avec 1^{er} anticorps
- ♦ rinçages

♦ 1 h 30 à 20°c dans obscurité avec 2nd anticorps

couplé à un fluorochrome

- ♦ rinçages
- ♦ montage des lames en milieu PBS-glycérol
- ♦ observation des lames en microscopie à fluorescence classique
- ♦ acquisitions sur un microscope confocal à balayage laser

Etudes en double marquage: recherche de collocalisations

en vert: marquage FITC; en rouge: marquage texas red

- enzyme et son substrat
- transmetteur et récepteur

Précautions

♦ Les expériences d'extinction

Suppression du premier AC

Précautions

♦ Le photobleaching

3. La visualisation des flux calciques

Choisir la sonde appropriée

Fura red

3. La visualisation des flux calciques 2

Charge des cellules

- sonde 1-5 µM dans 1 ml de Krebs-Ringer + pluronic F-127, SVF
- incubation 15 à 60 min; température 20 à 37 $^{\circ}\mathrm{C}$
- rinçage 10 min pour déestérifier la sonde
- Préparer l'acquisition

3. La visualisation des flux calciques 🐲 8

Acquisition d'oscillations spontanées sur tranche de cervelet (durée réelle: 1 min)

Avec la sonde Fluo-4 (λex: 485 nm, λem: 513 nm)

microinjection

3. La visualisation des flux calciques 19

- chauffage
- perfusion des produits

4. Les études de migration cellulaires a 1

- Accessoires
 - vibratome
 - microincubateur

- Marquage des cellules
- -incuber les tranches en présence de DiI (10 µg / ml) pdt 3 min
- rincer 2 fois

- laisser 2 à 4 h dans l'incubateur pour laisser diffuser
- placer les tranches sur le CLSM et faire 1 acquisition / 15 min

4. Les études de migration cellulaires 2

♦ Modèle de développement du cortex cérébelleux

♦ Migration sur tranches en cultures

♦ Effet du neuropeptide PACAP sur la migration

V= 17.8 µm/h

EGL

Ы

ЪС

♦ Migration des neurones

5. Organisation des cellules dans l'hypophyse: acquisition

GH-eGFP transgenic mice Confocal excitation microscopy

Image deconvolution + 3D reconstruction

Confocal et 2 photons

5. Organisation des cellules dans l'hypophyse: reconstruction GH-eGFP

3D image stack (70 μm) 60-day-old GH-eGFP male

Cellules GH-eGFP forment un réseau 3-D dans l'antéhypophyse

5. Organisation des cellules dans l'hypophyse

Pro-opiomelanocortin Growth hormone Luteinizing hormone
6. Etude de l'organisation en réseau des cellules à PRL

6. Etude de l'organisation en réseau des cellules à PRL

7. Comment voir un cerveau entier: microscopie feuille de lumière

La « transparisation » des échantillons pour aller plus en profondeur

Beaucoup de tissus biologiques ne sont pas transparents

Refraction Index Homogenization

Phospholipids : about 1.45 Proteins : 1.52-1.56

Refraction index of:

Protocoles de « transparisation »

Tissus biologiques transparents

Light scattering accounts for 99% of lost Transmission in biological tissues Adapté de la revue Cell 2015 Richardson and Lichtman, Présentation N Renier 2016, Institut de la Vison

Quelques protocoles de transparisation : avantages et inconvénients

Protocole de clearing	Bleaching de la fluorescence native (GFP)	Taille de l'échantillon		Toxicité	Temps maximum pour obtenir le
		réduction	expansion		clearing
3Disco (Ertürk A, nature protocol 2012)	+++	+++		++	2 jours
Clarity (Chung K, nature 2013)			+++	+++	4 semaines
Cubic (Susaki E, Cell 2014)			+	+	2 semaines
iDisco+ (Renier N, Cell 2016)	++++	0	0	++	2 jours
SeeDB (Ke M, nature neuroscience 2013)			+		1 semaine
BABB (Ahnfelt-Ronne J, J of histochemistry and cytochemistry, 2007)	+++	++		++	2 jours
ClearT (Kuwajima T, Developpment 2013)		0	0	+++	2 jours

Protocole de « transparisation » 3Disco

Ultramicroscope : Microscopie à feuille de lumière pour l'imagerie des échantillons transparisés

Les différents modes de microscopie en fluorescence

Fluorescence Imaging Modes in Live-Cell Microscopy

Cartographie de la Tyrosine Hydroxylase dans le cerveau de souris P5

8. Haute résolution: pour dépasser les limites de résolution des systèmes optiques classiques

STED

• Beyond the limits of optic microscopy

STED (Stimulated Emission Depletion)

PALM (Photo-Activated Localization Microscopy)

STORM (StochasTic Optical Reconstruction Microscopy)

Equipement STED

STED: principle in 2000

CW-STED

CW-STED: continuous wave lasers

Confocal

CW-STED

Les nouvelles possibilités pour améliorer la résolution

Stimulated Emission Depletion (STED): Résolution d'environ 100 nm (60 nm en gSTED)

The STED process

Diagram of the Leica TCS STED microscopy. The basis of STED microscopy is the coupling of the excitation laser with the STED depletion laser, resulting in the doughnut-shaped depletion. The two perfectly aligned laser systems minimize the size of the fluorescence spot, overcoming the resolution-limiting effects of diffraction.

<u>Attention</u>: utilisation de fluorochromes « verts - jaunes » uniquement, ne sont pas tous sensibles à la déplétion!

<u>Green fluorophores (excitation 488 or 514nm) :</u> - BD Horizon V500 (Becton Dickinson) - Abberior STAR 440SX (Abberior) - ATTO 488 (Sigma-Aldrich) - Dylight488 (Thermo Scientific) - Alexa488 (Invitrogen) - Oregon Green (Invitrogen) - Chromeo488/505 (Active Motif) - FITC <u>Fluorescent proteins (for live-imaging)</u> (excitation 488nm or 514nm) : - YFP/citrin/venus: OK - GFP (not ever)

-.... but also organic dyes

CW-STED vs Gated-STED

CW-STED: continuous wave lasers gSTED : gated fluorescence detection

Lifetime distribution of a fluorophore in the focal spot of a CW-STED microscope.

Long-living states (red) are located at the center whereas short living (blue) are at the periphery

Gated-STED to improve resolution

Pulse excitation

- Start collect fluorescence after 3 ns
- = improve X 2 the resolution
- Smaller details can be observed

Images STED

- Traitement des images : Déconvolution avec le logiciel Huygens

nanotubes

Résolutions mesurées :

- Image confocale : 250 nm
- Image STED : 120 nm
- Image g-STED : 90 nm
- Image g-STED déconvoluée : 80 nm

Images STED versus confocale de la vimentine

The vimentin network of a neuron imaged under confocal (outer) and nanoscale resolution STED (inner part) modalities. The STED image reveals single filaments which appear in the confocal reference as blurs

Images STED de vésicules in vitro

28 frames per second at 62nm resolution (well below the diffraction limit of 260 nm for light of the wavelength used)!

Images STED de neurones in vivo

STED microscopy of a mouse's brain, focusing on one thin layer of the somatosensory cortex. The neurons are labelled with yellow fluorescent protein. (A) Anesthetized mouse under the objective lens. (B) A section of dendritic and axonal neural structures (C) time sequence showing physical changes in one small area of the section shown in B, over 30 minutes. Scale bars =1 μm. (S Berning et al. Science 2012;335:551-551).

Images STED 2 couleurs

Get further information online

Stefan Hell, nobel Prize in 2014 in Chemistry 'for the development of super-resolved fluorescence microscopy', together with the American physicists Eric Betzig and William E. Moerner.

9. Haute résolution pour les observations à l'interface avec la lamelle

Microscope à onde évanescente ou TIRF (Total Internal Reflection Fluorescence)

- source d'excitation = laser
- objectif à grande ouverture numérique
- caméra CCD (15 images / sec)
- distance de pénétration de l'onde
 = 50 à 200 nm

Prism-type TIRFM (LHS) and objective-type TIRFM (RHS)

Les différents modes de microscopie en fluorescence

Fluorescence Imaging Modes in Live-Cell Microscopy

9. Exemple d'application: étude de l'exocytose

(Verhage and Sorensen, 2008)

3.≻ Pour en savoir plus

http://www.microscopyu.com

http://www.olympusmicro.com/

http://zeiss-campus.magnet.fsu.edu

La microdissection laser

Principe de la microdissection laser

Les microdissecteurs laser

Arcturus XT microdissection

LMD 6500 & 7000

Système PALM-Zeiss

Microscope AX 200

Interrupteur du système

La microdissection laser

Objectifs X5/0.25, X20/0.40, X40/0.6, X63/0.75

La microdissection laser

Principe :

Défocalisation du laser permettant le catapultage

découpe dépend de :

- Laser (focalisation, énergie)
- l'objectif (ouverture numérique de l'objectif employé)
- la position de focalisation du laser
- (la vitesse)

Laser UV

préparation et des propriétés
 d'absorption du matériel à prélever =
 nature et épaisseur du tissu

Catapultage par défocalisation du laser

La microdissection laser

Tissu X20

dessiner la zone

catapultage

récupération du tissu

Découpe avec l'objectif X20

Mode de découpe + catapultage « Close, cut et auto LPC »

La platine se déplace afin de réaliser la découpe

Attention de bien vérifier que l'on catapulte bien dans la goutte !

La microdissection laser

Zone – cellule - chromosome

LMD 7000

Le workflow de la microdissection laser

ARN + kits spécifiques (micro quant)

Protein

spectrométrie de masse

Le workflow de la microdissection laser

Mise au point des conditions de microdissection laser

Colorants	Découpe	Catapultage	Qualité ARN	Efficacité Q-PCR
Non coloré Non deshydraté	10 à 20 µm	10 à 20 µm +/-	-	-
Non coloré Deshydraté	10 à 40 µm	10 à 40 µm	+++	+++
Bleu de toluidine	10 à 60 µm	10 à 60 µm	+/-	-
Crésyl violet	10 à 60 µm	10 à 60 µm	+++	+
Hématoxyline Eosine	10 à 60 µm	10 à 60 µm	+++	++

Cells or tissue

Genor

Total RNA

Extraction ARN

• Qiagen Rneasy micro kit

Intégrité des ARN ?

RNA quality

Time (seconds)

Principe de la PCR

Cycles

R

Quantification de la quantité de messagers

✤ 5 cycles de différence

– Quantité multipliée par 2 à chaque cycle

2⁵ (32) fois plus d'ARNm dans le rouge que dans le jaune

Amplification cDNAProtocole SMARTer Pico PCRcDNA Synthesis Kit - Clontech Cat. No. 634928

First-Strand cDNA Synthesis (reverse transcriptase)

Colunn Purification of cDNA using NucleoSpin (éliminer les nucléotides non

incorporés et les petits fragments d'ADNc (<0,1 kb))

cDNA Amplification by LD PCR (phase d'optimisation du nombre de cycles)

PCR Clean-Up (mesure nanodrop : objectif obtenir 1 à 2 μ g d'ADNc après purification)

Table II: Guidelines for Setting Up PCR Reactions					
Total RNA (ng)	Volume of Diluted ss cDNA* for PCR (µl)	Volume of H ₂ O (μl)	Typical Optimal No. of PCR Cycles*		
1000	2.5	77.5	18–20		
250	10	70	18-20		
100	25	55	18-20		
50	40	40	18-20		
20	80	none	19-21		
Б	80	none	21-23		
1	80	none	24-27		

Plateau obtenu à partir de 27 cycles pour 1 ng d'ARN total de foie de souris avec un smear qui apparaît ensuite dans les hauts poids moléculaires. Le nombre de cycles optimal est donc de 24 pour 1 ng

Exemples de données près amplification

The expression profile of Neurogenic differentiation 1 (NeuroD1) and tubulin beta 3 (Tubb3) is mantained in the cDNA amplification of a big area of microdissected tissue (0,5 mm²). A) Quantity of RNA before the RT-PCR and the quantity of cDNA after the amplification protocol (18 PCR cycles for an area of 0.5 mm² and 21 PCR cycles for an area of 0,007 mm²). B) qPCR of the non amplified and amplified cDNA of the microdissected granule cells was analysed using GAPDH as a reference gene.

Couplage microdissection laser et Q-PCR au débit

Cellules en culture

Destruction de cellules ou clonage

Support suitable for cultured cell

PALM or classical Dishes can be used

Cells are harvested in cap after capatulting

Cellules en culture

Laser pulse

Transmitted light

Fluorescence light (green)

Quelques points importants

- Morphologie du tissus
- Coloration
- Préservation des ARN
- Kits d'amplification...

Les F-techniques

1. Etude de l'expression de la GFP

- protéine naturellement fluorescente
- protéine résistante au photo blanchiment
- ♦ petite taille (238 aa)
- λ ex et λ em proches du FITC
- Méthode non-invasive

Variants

10 Å

1. Etude de l'expression de la GFP

2. ≻ Le FRAP

Fluorescence Recovery After Photobleaching (FRAP) with Green Fluorescent Protein

FRAP of Fluorescence Tagged Proteins in Dendritic Spines of Cultured Hippocampal Neurons

Principe

Applications

Intéraction ligand / récepteur ou formation dimères (Bcl-2/Bax) : - protéines de fusion BFP/YFP

Excitation GFP

Excitation 100% ROI YFP

- ↑fluorescence
- plus de transfert sur l'accepteur
- mise en évidence

Mesure AMPc

Fluo= 535 nm

β-adrenergic receptor stimulation activates PKA in the parietal cortex.

Α

В

Castro L R V et al. J. Neurosci. 2010;30:6143-6151

point de focalisation

Ex: EDTA

One-photon UV uncaging

e.g. Bhc-Glu

Two-photon IR uncaging

Caged $IP_3 \rightarrow IP_3$ actif

1 s

35

0

80

- L'imagerie par Christian Cognard dans Biofutur n°180 juillet-août 1998
- Handbook of Confocal Microscopy, par James B. Pawley, plenum press NY and London
- Confocal microscopy, methods and protocols, par Stephen W. Paddock, Humana press
 Totowa

<u>Internet</u>

- Molecular probes (sondes fluorescentes + tutorials): http://probes.invitrogen.com
- Molecular dynamics: www.mdyn.com/application_notes/applications.htm
- Leica (constructeur): www.leica.com
- Zeiss (constructeur): www.zeiss.com
- Bio-Rad (constructeur): www.bio-rad.com
- Nikon (constructeur): www.nikousa.com
- Olympus (constructeur): www.olympus.com
- PerkinElmer (constructeur): www.wallac.fi

